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SUMMARY

An expiocratory analysis of vehicle guidance during the approach to
a target planet is presented. The objective of the guidance maneuver is
to guide the vehicle to a specific perigee distance with a high degree
of accuracy and minimum corrective velocity expenditure. The guldance
maneuver is simulated by considering the random sampling of real measure-
ments with significant error and reducing this information to prescribe
appropriate corrective action. The instrumentation system assumed in-
cludes optical and/or infrared devices to indicate range and a reference
angie in the trajectory plane. Statistical results are obtained by Monte-
Carlo technigues and are shown as the expectation of guldance accuracy and
velocity-increment requirements. Results are nondimensional and applicable
to any planet within limits of two-body assumptions.

The problem of determinin;; aow many currections to make and when to
make them is a conseyuence of the confiicting reyuirement of accurate
trajectory determination and propulsion. Optimum values were found for
a vehicle approaching a planet along a parabolic trajectory with an
initial perigee distance of 5 radii and a target perigee of 1.0Z2 radii.

In this example measurement errors were less than 1 minute of arc. Re-
sults indicate that four corrections applied in the vicinity of 50, 16,

5, and 1.5 radii, respectively, yield minimum velocity-increment reguire-
ments. Thrust devices capable of producing a large variation of velocity-
increment size are reguired. For a vehlcle approaching the earth, miss
distances within 32 miles are obtained with 90-percent probability. Total
velocity increments used in guidance are less than 3300 feet per second
with 90-percent probability. It is noted that the above representative
results are valid only for the particular guidance scheme hypothesized

in this analysis.

A parametric study is presented which indicates the effects of meas-
urement error size, initial perigee, and initial energy on the guldance
requirements. Measurement error size significantly affects both guidance
accuracy and velocity-increment expenditure. The initial trajectory, as
given by its perigee and energy, affects the velocity-increment expen-
diture but not final guldance accuracy.



INTRODUCTION

The current literature contains many reports on the subject of inter-
planetary travel and vehicle systems with relation to guidance require-
ments. Studies have been made of the accurscy requirements at cutoff
during the initial launch phase (ref. 1), ard it is generally accepted
that if most mission objectives are to be attained a space vehicle must
be eyquipped with a guldance system allowing trajectory corrections enroute.
Tne functicn of midcourse guidance 1s to ascsure a successful rendezvous
with the target planet at the proper time ard place. However, if close
tclerance maneuvers in the vicinity of the target are called for, some
form of terminal or approach-phase guidance becdmes necessary. One par-
ticular example that has been given much attention is the use of
atmospheric-drag decelerations.

This repurt is concerned with the guidance of a space vehicle as it
aprroaches a target planet. The analysis ccnsiders the random sampling
of real measurements, with significant error, and a multiple-correction
(but not continuous) guidance scherne.

A previous study by tine authors (ref. £) contains an investigation
of an approacn-rhase guidance scheme using range, range-rate, and angular-
rate measurements. The present study hypotresizes a navigation scheme
utilizing self-contained optical aud/or infrared instrumentation to
measure angles. Range is determined from trhe planet's apparent disk, and
angular position is found by planet-star observation. Trajectory iparam-
eters, knowledge of which is reyuired for ccatrol action, are determined
by the simultaneous solution of eyuations cerresponding to three successive
vosition fixes. The details of instrumentation or data smoothing are not
considered in this study.

It is desired to guide the vehicle so that its perigee (minimum
range) is tangent to an arbitrary tarset sphere. The wvoint of tangency
is not considered; that is, the inclination >f the plane of motion and
the orientation of thnie perigee in that plane are not specified. In
addition, the rotation of the vehicle about the rlanet (relative to the
planet's direction of rotation) is not specified. A two-dimensional
rolar representation is thus sufficient for analysis. Thrust agplication
1s assumed impulsive in effect and perfectly executed. Emphasis is placed
on high accuracy guidance; that is, miss distances of the order of tens
of miles. The objective is to perform the nzcessary maneuvers with
minimum velocity expenditure.

The method used in studying the guidanc: probilem is based on standard
lMonte-Carlo techniques and consists of repeated calculation of random
trajectory "runs’ where the random variable is the measurement error.
Statistical results are developed from a finite sample size which
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reasonably approximates the infinite sample. Results are analyzed pri-
marily on the basis of the probability of error in final perigee and the
probability of regquiring total velocity increment for control capability.

This report presents a method of obtaining the statistical results
assoclated with the guidance problem and i1llustrates the nature of the
esults with an exariple of a reasocnable guidance scheme. It snculd be
mentioned that certain classes of results are peculiar to the particular
guidance scneme hypothesized hereirn.

SYMBOLS
E dimensionless total energy per unit mass, LéVVé
g total energy per unit mass, (miles/sec)g
errfing distribution of indicated perigee
eprr? error distribution of angle 68
err® error distribution cof angle o
G universal gravitational constant, miles5/lb-sec;
H dimensionless angular momentum per unit nass, h/vero
h angular momentw: per unit mass, miles;/sec
M mass of target body, 1b
n number of corrective velocity lupulses
P dimensionless verigee, rp/ro
R dimensionless radial distance (rance), r/ro
Ry dimensionless radial distance at which first currection 1is
made
r radial distance (range), miles
ry perigee of trajectory, miles

S sample size



W
Subscripts:

err

id
ind

max

standard error

dimensionless velocity, V/ve

dimensionless velocity impulse, A’f/ve

velocity, miles/sec

velocity impulse, ft/sec

surface escape velocity, miles/sen

trajectory angle, measured between local horizontal and tra-
jectory tangent, deg (radians)

velocity impulse
deg (radians)

perigee argument
eccentricity

angular position
from reference

apparent angular

error
final

initial

angle with respect to initial velocity vector,

in plane of motion, deg (radians)

in plane or motion measured counterclockwise
axis, deg (radians)

diameter, deg (redians)

with perfect measurements

indicated by measurements with eriors

maximun

measured

minimum

total
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tar target

true true (actual)

a,b,c first, second, and third position fix of a given set
0 conditions at surface of planet

1 conditions before corrective thrust

2 conditions after corrective thrust

ANALYSIS

This exploratory analysis concerns the problem of guiding a space
vehicle during the approach to a target planet. The approach phase is
defined here as that region in the planet's vicinity, but above its
atmosphere, where the predominant influence on the vehicle's motion is
the planet's own attracting force. An inverse-square, symmetric, central
force field is assumed. This definition leads to the use of two-body
conic trajectories.

The target of guidance is defined in terms of perigee distance. The
inclination of the trajectory plane, the orientation of the perigee in
that plane, and the vehicle's direction of rotaticn about the planet are
not considered. Hence, a two-dimensional polar representation is used
in the analysis. It is recognized that some or all of the above factors
may be of importance in an actual mission.

Trajectory corrections will be governed by the following: If the
vehicle determines (from measurements) that it is off course but ap-
proaching the planet in a clockwise (counterclockwise) reference direction,
then it will apply thrust in such a manner to correct its perigee distance
while continuing to approach the planet is a clockwise (counterclockwise)
direction. High-thrust devices are assumed. Thrust is then associated
with negligible burning time relative to trajectory time scales and con-
sequently is considered impulsive in effect. The impulsive correction is
assumed to be applied in a constant direction in the plane of motion and
perfectly executed.

The following analysis presents the conic trajectory relations in a
nondimensional form. The velocity requirement corresponding to desired
perigee corrections is then derived. A means of determining the trajectory
parameters from position measurements is developed, and the effect of
measurenent errors on the accuracy of such determination is discussed.

The questions concerning guidance logic are discussed, and a guidance



scheme is hypothesized. Finally, the method ty which statistical results
are obtained is presented.

Trajectory Relations

Normalized trajectory equations. - Since the classical two-body
problem is assumed, the governing equations cen be expressed by the con-
servation of both energy and angular momentum (ref. 3). With the nota-
tion of sketch (a),

Perigee
P, Ty \ /
\ o)
N
(a)
ve GM X
&= - -0 (energy per unit rass) (1)
h = vr cos a (angular momentum per unit mass) (2)

These relations are nondimensionalized so as to be applicable to
any target planet or moon. A convenient reference is the parabolic escape
velocity at the surface of the planet. From equation (1), when & = O,
the escape velocity is a constant given by

ve = (3)

The defining equations of the normalization al-e
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The range R 1s now measured in planet surface radii and velocity V
in surface escape velocities. Equations (1) and (2) may now be divided

by Vé and Verp, respectively, and rewritten in dimensionless form:

E =V - (5)

H= VR cos (6)

The trajectory angle at the perigee of any approach path is identi-
cally zero. Equations (5) and (6) may be combined for conditions at the
perigee, and angular momentum is thus shown to be a function of energy
and perigee:

2

H® = P°E + P (7)

The trajectory angle is now given as

PEE + P (8)
COos U = -y
R°E + R

Another useful expression is the relation of angular momentum, eccen-
tricity, and energy:
2 ea -1

H = — ' (9)

Corrective thrust. - In the vicinity of the target planet the vehicle
coasts along a conic approach trajectory relative to the planet. With
reference to figure 1(a), assume that the perigee P, (distance of closest

approach) of the initial trajectory differs from a desired or target
verigee Pggp. Therefore, control action in the form of thrust application



must be initiated which will act to guide the vehicle to Pig,. Guidance

requirements will be measured by the velocity increments due to thrust
which, throughout the analysis, will be designated by the terms "velocity
increment," "velocity impulse,’ or AV. As previously mentioned, the

AV used for guidance is assumed to be impulsive in effect.

From the trigonometric relations of figure 1(b),

AVZ = Vf + V% - 2VyVyp cos(ag - ay) (10)

Vo sin(as - o)
AV

sin B = (11)

It is possible to minimize AV Dby orienting the thrust vector in the
proper direction. Such an analysis was the cbjective of an earlier study
by the authors (ref. 4), where it 1s shown tkat an iterative solution is
required. Since the present report is statistical in nature and there-
fore time-consuming, the optimum calculation becomes lengthy. A reason-
able approximation to AV ;, 1s obtained by a "zero-energy-change'' cor-

rection; that is, thrust applied in such a direction that the energy and
velocity magnitude remain the same before anc after burning (ref. 4).
For this condition E, = E,, Vi = Vz. Equations (10) and (11) reduce to

. CLB - G/]
AV = 2V sin = (12)
Sin(@z - dq)
gin B = e —la-l (13)
2 sin 2 5 -

The velocity impulse AV may be found using equations (5), (8), and
(12) and is seen to be a function of initial trajectory parameters (Ey,

P.), range, and target perigee.

1)
The magnitude of the corrective velocit;r impulse (eq. (12)) is
plotted as a function of range and initial perigee in figure 2. The ap-
proach trajectory is parabolic, and the target perigee 1s 1.02 radii.
For a given initial perigee, AV decreases as the range at which thrust
is applied increases. Obviously then, from —he standpoint of propulsion
it is desirable to execute the corrective maneuver as far from the planet
as possible,

9%L-d
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Determination of trajectory parameters. - As seen from the preceding
section, equations (12) and (13) define the corrective velocity increment
and may be evaluated for any conditicn if the parameters (El, Py, R) are
known. One means of determining these parameters is now developed in
its simplest form. The details of measurement, smoothing techniques (if
employed), and computing equipment are not considered here.

Suppose that navigation equipment is available which allows the
measurement of angles between celestial bodies, together with the angular
dlameter of the planet. The result of a set of such measurements is a
position fix for the vehicle, and it will be shown that & minimum of
three successive fixes is required to determine the trajectory parameters
for this particular measurement scheme.

Angular position can be obtained by measuring a series of planet-
star angles. Since this analysis is limited to two dimensions, the
simplifying assumption is made that a reference direction (i.e., a
star) in the plane of motion is available and can be so determined.
Thus, the number of planet-star measurements is reduced to one. The
plane of motion is considered constant during fixes, and, since the star
is essentially infinitely far away, the reference axis has insignificant
motion during the interval between fixes.

Range can be obtained by measuring the angle subtended by the
planet's apparent disk. This may be accomplished with optical or infra-
red scanning-type instrumentation. The details are not considered in
this analysis; however, the geometry of disk scanning is fully treated
in reference 5,

Figure 3 illustrates the angles used in the measurement scheme. The
angle (n - 6) is measured from the planet-star observation and gives the
angular position 6 of the vehicle in the plane of motion with respect
to the reference axis. Range is easily found using the notation of
figure 3:

=

. 0
sin r

g

or

csc & (14)

R 2

It

It is now shown how the basic measurements are used to compute the
desired trajectory parameters. The polar equation of a conic trajectory
can be expressed in dimensionless form as
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R =
1 + ¢ cos{@ - 7}

(15)

The angle Yy 1s the perigee argument and serves to define the orienta-
tion of the trajectory in the plane. The parcmeters (H, €, Y) are
constant and completely determine a coasting —rajectory in the plane of

motion. At least three successive position f:xes (R, G)a p.o are re-
E
quired to determine these constants. The simultaneous sclution of (15)

for fixes a,b,c gilves

Ra(Re - Rp)cos 6a + Ry(Ry - R.)cos 6, + R.(Ry - Ry)cos B¢
tan ¥ = FR, - R.)sin 6, + Ry(Rs - Ry)sin 6y + Ry(Ry - Ryp)oin 6,

(18)
€ = T (17)
R, cos(6, - ¥) - Ry cos 6y - )
2 BRa
H® = — (1 + ¢ cos(8g - Y)] (18)

The trajectory parameters E and P are related to H and € through
equations (7) and (9).

It is important to menticn one inherent :‘ault of this measurement
scheme. If the measurement errors are suffic:.ently large, the possibility
of an indeterminate solution exists; specificully, HZ may be negative.
Geometrically interpreted, this means that no conic section, whose focus
is situated at the force center, can be passed through the three posi-
tions. Analysis of the results to be presented has shown that this situa-
tion occurs infrequently. When it does occur the set of measurements
is disregarded and replaced. It is felt that this is the proper inter-
pretation for the purpose of analysis since in a real flight situation
a set of indeterminate data would not be toleirated as a final result and
additional measurements would be taken to obtain information. Further-
more, smoothing techniques, which have not becn considered, would tend
to eliminate this possibility.

The measurement scheme and data reduction as described in this
section are based upon the minimum number of Hosition fixes and do not
take into account past trajectory knowledge. There may be good reason
to take more than three fixes, thereby taking advantage of the redun-
dancy of data. This could be accomplished by means of a least-squares
fit to the observed data to obtain a more accurate estimate of the tra-
jectory parameters (refs. 5 and 6). In addition, the proper weighting
of past knowledge would improve the trajectory determination.

9¥%L-d
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At this point of the analysis the information flow can be repre-
sented by the following block diagram:

Input Position Parameter Control
data > data > computation > action
w, 1 - 8 R, 6 H, €, E, P AV, B

Effect of Measurement Errors

The accuracy with which a vehicle can be guided to a target and the
AV requirements can be greatly affected by measurement errors. It is
of' interest to determine the effect of measurement errors on certain
rarameters for two reasons. First, such an analysis is helpful to the
formulation of good guidance logic. Second, it serves to explain some
subsequent results.

Range error coefficient. - The error coefficient involved in range
determination is easily found by differentiating equation (14) with
respect to . Thus,

dR 1 .
) R-\/RZ -1 (13)

Equation (19) is plotted as a function of R 1in figure 4. The error
coefficient is seen to increase with the square of R for large R

(RZ >> 1). Although the error coefficient is linearized, it adequately
represents the true range error when the measurement error is not too
large. TFor example, 1 minute of arc error (0.000291 radian) at a dis-
tance of 100 radii causes an error of about 1.5 radii or 1.5 rercent.
In contrast, if the measurement error can be reduced to 0.2 second of
arc, range 1s determined to 0.005 percent.

Perigee error coefficient. - Perigee can be expressed in terms of
angular moumentum and eccentricity. When R = P, egquation (15) becomes

2

P =

1l + ¢ (20)



1z

differentiating
2z
oP oP 4H 2H
dP = dH + de = dH - ————= de
oH de 1+ ¢ (1 + €)2
_ dd € )de
dP—ZP—H—P(l+€——€ (21)

Note that 2P > Ple/(1 + €)]; in particular, if the approach trajectory
is parabolic (e = 1) and dH/H and de/e ar: assumed of the same order
magnitude, then the first term of equation (21) is four times as large

as the second. Actually, data obtained in this analysis have shown that
dH/H > de/e. Therefore, in order to simplify this discussion assume that
the perigee is influenced mainly by the angular momentum

ap = 2p B - gu2) (22)
H - 2

2
The solution for d(H ) is treated in appendix A and is shown to be a
function of positions (R, e)a,b,c and the error in the measured angles.

The results of the error analysis are shown in figures S. The root-
mean-square error coefficient (egs. (22) and (A4)) is plotted in figure
5(a) for a parabolic approach trajectory and three values of initial
perigee. The independent variable R, 1is thz range at which the third

position fix is taken. In this example the first position fix is taken
at Ry = 100 radii and the second midway betwzen the first and third.

Two results are immediately apparent: (1) The accuracy in deter-
mining perigee increases rapidly as the spacing between position fixes
is increased, and (2) the perigee is better determined (in terms of
absolute error) if the trajectory passes closz to the planet. The
relative error coefficient dP/P is approximately equal for the three
values of perigee. As an estimate of the nurerical pergiee error, con-
sider a root-mean-square error in angle measurement of 30 seconds of arc.
Within the assumption of linearized errors, the errors in determining
the perigee for P equal to 5 and 1.0 radii are 1.00 and 0.2Z radius,
respectively, when R, = 50 radii.

Figure 5(b) shows the effect of energy can the root-mean-square
perigee error coefficient. For example, if R, = 50 radii, increasing

the energy from parabolic to one-tenth unit Lyperbolic is associated with
a tenfold increase in error sensitivity. This characteristic is a result
of the particular measurement scheme used and 1s not generally true. As
a conseguence of the error sensitivity it can be expected that the Av
requirements attributed to imperfect guidance will increase with trajec-
tory energy.

9%.L-d
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Guidance Considerations

During the approach phase, the function of guidance is to direct
the space vehicle to a specified target perigee and to do so with a
minimum AV expenditure. The opposing requirements of propulsion and
accuracy have been illustrated in figures 2 and 5. It is this inherent
interaction that raises the question as to how optimum guidance should
be performed.

If knowledge of the initial trajectory and thrust execution were
prerfect, a single correction made far from the planet would suffice to
achieve the desired trajectory and would be relatively inexpensive. In
the actual case, however, control action is taken based on information
subject to error. The effect of thrust application is a new trajectory,
possibly significantly improved, but still not on target. The difference
between the perigee after correction and the target will be called the
"miss distance.” A target perigee and an acceptable miss distance cor-
respouding to a particular mission objective will most likely be specified
in advance. In this analysis, emphasis is placed on miss distances of
the order of 10 miles; (i.e., as required for atmospheric drag decelera-
tions, ref. 7). The achievement of a successful approach trajectory wiil,
therefore, necessitate either highly accurate instrumentation or, in the
case of less accurate instrumentation, a more sophisticated multicorrec-
tion guidance scheme.

The approach in this report is to hypothesize a multicorrection
scheme for current state of the art equipment and in addition to note
the effect of more accurate equipment. In formulating good guidance
logic, the following questions are to be considered:

(1) When should guidance action be initiated?
(2) When should guidance action be cut off?

(3) How many corrective impulses are necessary, and what should be
the interval between them?

(4) What part of the indicated error should control action attempt
to correct?

Certain factors of the guidance logic will be arbitrarily chosen.
A framework for analysis will be set up, and the effects of major param-
eters therein will be investigated in order to determine an optimum-type
solution.



16

The random numbers are obtained from a methoc commonly in use, the detalls
of which are presented in reference 9. Corrective action is taken to guide
the vehicle to the target within the framework of the guidance scheme.
Results include (1) size of individual veloc:.ty increment used, (2) total
velocity increment used during approach, (3) accuracy, or miss distance,
after each correction, and so forth.

The Monte-Carlo method consists of repeated calculation of random
trajectory runs. The statistical results are developed from a practical
sample size which reasonably characterizes t.ae infinite sample. Average
or probable events can be obtained with a falrly high degree of accuracy
from a relatively small sample. The disadvaitage of a small sample is
that unlikely occurrences may not be represeited correctly. Conseguently,
measures of unlikely occurrences are in quesiion as to their significance,
and care must be excersized so that erroneous interpretation of data is
not drawn.

The problem considered in this report wis programmed. for an IBM 653
computer. A complete calculation of a singl: trajectory correction re-
quired 11 seconds. Statistics developed fron 200 samples for a guidance

scheme using four corrections required appro<imately 2% hours of computing

time.

RESULTS AND DISCUSSION

The method of statistical analysis will now be applied to the par-
ticular example of the guidance scheme hypotaesized. In order to fix
attention on the characteristics of the results, a reference solution is
presented first. The reference solution rerresents optimum-type guidance
in the sense that guidance logic is chosen which minimizes the AV
expenditure.

Following discussion of the reference solution, the results which
led to its choice are presented parametrically. In addition, a para-
metric study is presented which illustrates the effects of initial perigee,
measurement errors, and initial energy upon guidance requirements. Com-
puting time considerations required that nurerical results for the para-
metric study be developed from a smaller statistical sample than that
for the reference solution.

Results of Reference folution

As a baseline for presenting results certain input parameters and
guidance logic are prescribed. These are summarized in table I, and the

9%.L-H
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values for an earth approach are given when apprcpriate. Henceforth,
values in parentheses will correspond to an earth approach.

The initial approach trajectory is parabolic with a perigee of 5
radii (20,000 miles). The target, chosen just above the planet's sur-
face, is 1.02 radii (80-mile altitude); thus, the initial trajectory
error 1s 3.98 radii. Angular measurements are initiated at a range of
100 radii. Four corrective impulses (based on the range-variant scheme
described) are used. They are applied at o0, 15.57, 4.85, and 1.5 radii,
respectively. Control action attempts to correct the entire trajectory
error which is indicated by measurements. The statistical measurement
error distribution is assumed rectangular in shape (see appendix A) with
a maximum error of 41 minute of arc. Two hundred random samples are used
to develop statistical results.

A typical trajectory run. - The following table shows the segquence
of events for one typical random sample:

Condition Energy, E Perigee Perigee, Velocity
argument, P, increment,
T, radii AV
deg (escape ve-
locity)
Initial 0 225 5.0000 | meommmmmmmoo
After l1st -2.5X10'5 242 1.4877 2.0957X10'2
correction
After 2nd | -2.4X107° 248 1.0610 |1.2741X10-%
After 3rd | -2.4X107° 249 1.0159 |0.51280%107 4
After 4th | -1.2X107° 248 1.0198 |0.24640%x1074
AVt = AV
= 4.,1290X10-2

The deviation between initial and final energy is a very small value.
This is to be expected since no deviation would exist if guidance were
perfect. In terms of an earth approach this would correspond to a ve-
locity deviation at the perigee of about 1 foot per second. The change
in perigee argument is 230; however, the point of tangency at the target
sphere was not considered in the target specification. As seen from the
P column, the largest part of the trajectory error is corrected by the
first AV impulse; the final error is only 2X10-% radius (0.8 mile). 1In
this example, the propulsion system must be capable of producing an 8.5

to 1 range of AV, and a total velocity increment of 4.129X10-2
(1520 ft/sec).



Guidance accuracy. - The extent to which a vehicle was guided to the
target is shown in figure 6(a). The final distribution about the target
perigee is given in the form of a rectangular frequency polygon. FProb-
ability of a positive miss distance is 57.5 percent while that of a
negative is 42.5 percent.

The results of guidance accuracy may be oresented in another form,
namely, the integrated freguency polygon commonly called the cumulative
probability distribution. Figure 6(b) shows the probability of hitting
a given size target band. The median miss distance (50 percentile) is
1.33X10°° radius (5.4 miles), while guidance s accurate to within 10-¢
radius (40 miles) with 20.5-percent probabilizy. This type of plot is
more useful in illustrating probability of su:cess; however, it does not
give as complete a picture as does the frequency polygon.

Total velocity increment. - The cost of guidance in terms of total
velocity expenditure is shown by figure 6(c) in freyuency polygon form.
The ideal reguirement is 0.0122 v, (450 ft/se:) and arbitrarily rep-

resents a single corrective impulse applied a: 100 radii assuming zero
rmeasurement error (see fig. 2). Observe that the distribution i1s skewed
considerably toward high AVg; this is characteristic of the guildance
scheme. The smallest velocity expenditure inlicated by the sample is
0.027% vg. Velocity increments exceeding 0.2 ve (7360 ft/sec) are pos-
sible but with very little likelihood. The m>dal class interval, cor-
responding to the most probable reguirement, is given by the maximum
ordinate. Thus, 32 percent of the time-velocity increments between 0.04
and 0.05 v, are used.

Figure 6(d) illustrates the cumulative rrobability distribution.
The difference between the ideal requirement and the probability curve
is the excess AV due to guidance in the presence of measurement errors.
The median AVg corresponds to a 285-percent excess over perfect guid-

ance. This plot may be interpreted in two ways. First, it shows the
probability of requiring AVy less than a given amount and is therefore
indicative of necessary guidance propulsion. Second, if a given AVy
is available, say 0.2 vg, the probability of successfully completing the
guidance maneuver is obtained; in this case about 99-percent expectation.
Values of AV, that have been exemplified may be considered high, but

it should be recalled that the assumed values of initial trajectory error
and measurement error were significantly large. The effect of reducing
these errors on AV requirements will subsecuently be shown.

Individual velocity-impulse size. - Figire 6(e) shows the cumulative
probability distributions of each of the four corrective impulses. DNote

the dispersion of the last three impulses as compared to that of the first.

9¥L-d
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The first impulse acts to correct a vehicle whose particular trajectory
error is 3.98 radii, and the possible range of AV required (about 0.0l
to 0.065) is a function of the measurement error distribution. However,
the statistical requirement of the remaining corrections is not only a
function of measurement errors, but also of the true perigee distribution
resulting from each previous thrust application. This magnifying effect
accounts for the large range (about 10™% to 1071) associated with the
remaining impulses. The arithmetic means of each of the four velocity
impulses are 0.02506, 0.0172, 0.00614, and 0.0llY, respectiveiy. In this
example, the fourth correction reguires a larger AV than the third
since the range at which the correction was applied had a larger effect
than the errors to be corrected.

Of importance to engine design is both the range of AV anticipated
and the frequency of a given AV increment. The velocity reguirement
of each of the four corrections is shown in freguency polygon form in
figure 6(f). The distribution of the first impulse is essentially sym-
metric with most frequently used increments (64 percent of the time)
between 0.02 and 0.03 v, (mean 20 percent). A value of AV less than

0.01 or greater than 0.04 is called for very infrequently. The freguency
distributions of the second, third, and fourth velocity impulses are
similar with the characteristic of decreasing freguency with increasing
AV, although the rate of decrease is considerably slower for the second
impulse. In each case most freguently used increments are in the region
less than 0.005 vg.

Cutoff effects. - In hypothesizing guldance logic, four trajectory
corrections were specified with cutoff at 1.5 radii. Heretofore, evalua-
tion of the guidance scheme was presented after the final correction;
however, it is of interest to note the effects of terminating control
action after each correction. Probability of total velocity expenditure
at cutoff is shown in figure 6(g). It is noted that additional correc-
tions cause the probability curves to approach 100 percent at a slower
rate. The median AV. cost for four corrections is about twice that

for one correction. At the 95-percent probability level, this increased
requirement is almost a factor of 3.

It is necessary to compare the velocity expenditure to guidance ac-
curacy attained at cutoff. Figure 6(h) shows the probability of hitting
a glven size target band. If a single correction i1s made, a miss dis-
tance greater than O.Y¢ radius (3600 miles) will result 10 percent of the
time. This is an intolerable error since the target perigee is only 0.02
radii above the planet's surface., Additional corrections are seen to
reduce this error by factors of approximately 9, 26, and 90, respectively.
A comparison of figures &(g) and (h) indicates that the increase in
guidance accuracy, resulting from continuing trajectory control, appears
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to be far greater than the increase in veloc!ty expenditure when compared
on a percentage basis.

Correlation plots. - It is often desirable to show the relation be-
tween two statistical parameters. This can be accomplished with use of
a scatter diagram wherein the variables are plotted on the x- and Y-
axes, respectively. The degree of correlation can be estimated by the
pattern of the points plotted.

The correlation between the error in de.ermining the perigee and the
perigee error remaining after the correction is of interest. The
latter parameter is not uniquely determined by the former, but on the
contrary depends upon various other trajectory parameters and the par-
ticular random measurement errors chosen. A statistical correslation may
be used to advantage in relating these parameters.

Figure 6(i) is a result of plotting the data points corresponding
to the final correction, namely at R = 1.5 :-adii. The absolute final
miss distance ]Pf - Ptar‘ is plotted against the absolute error in

determining perigee lPind - Piryel|» The moss interesting characteristic

is the grouping of points about the 45° line, representing a l:1 correla-
tion. In a statistical sense, it can be concluded that errors in de-
termining the perigee at the final correction point will result in a final
miss distance of the same order.

Figure 6(j) illustrates a similar corre ationj; however, the data
are not limited to the final correction but -ather are taken from each
of the four corrections. The 1:1 correlation is again indicated except
in the region of large error. In this regioi, which is representative
of the first correction, the characteristic nppears linear but biased
from the 1:1 correlation. An error in deteriaining perigee of a given
size is reflected in a miss distance of abou: one-half the size. The
correlation characteristics illustrated in f.gures 6(i) and (Jj) were
substantiated (in an apuroximate sense) by a linearized error analysis.

The overall success of a guidance program is measured in terms of
velocity requirement and guldance accuracy probabilities. The two prob-
ability distributions have been presented sejarately. However, the
question of combination arises; that is, will a vehicle which is con-
sidered successful in terms of final miss distance also be successful in
terms of propellant expenditure, or do some >ther criteria exist? As a
means of explanation, a scatter diagram is siown in figure 6(k) in which
AVy  is plotted against final miss distance. The pattern of points ap-

pears truly scattered, thus indicating small or zero correlation between
the two variables. The density of points in a given region provides a
measure of overall success. For example, consider the rectangle formed

9%.-H
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by O <AVy <0.06 and 0O < ’Pf - Ptar] < 0.002. There is a 46-percent

probability that a vehicle will guide to within 0.002 radius and expend
no more than 0.06 escape velocity in doing so. Now, upon examining the
separate probability distributions (figs. 6(b) and (d)) the probabilities
are 64.5 and 70 percent, respectively. If the two variables are uncor-
related, the product of the separate probabilities should give the over-
all, or combined, probability. This procedure yields approximately 45.2
percent, which is sufficiently close to the previous value of 46 percent.
Thus, for this particular guidance scheme, the uncorrelated characteristic
proves useful in estimating the overall success of the guidance maneuver.
It is realized that a high probability of combined success necessitates
very high probability in both AVy and miss distance.

A more useful illustration of combined success is shown in figure
6(1). A word of caution is necessary before interpreting the results.
The guidance computation was performed under the assumption that the
vehicle possessed an unlimited AV capability, this being necessary in
order to obtain the velocity requirement. Therefore, no information is
available on the guldance of those vehicles which may have begun with a
limited propellant supply and subsequently run short before completing
the guidance maneuver. That is to say, in reading figure 6(1) one may
not choose a given AV, availability and find the probability of guiding

to within a given size miss distance. With this in mind we proceed with
an example. If the objective is to guide to a perigee of 1.02 radii
with a miss distance no greater than 0.006 radius (24 miles), the prob-
ability of doing so using less than 0.050 Ve (1840 ft/sec) is 50 percent.

The probability of expending less than 0.098 (3610 ft/sec) is 80 percent.
The shape of the curve is descriptive in that it approaches asymptotes
parallel to the axes, thereby defining the limiting conditions. The
numerical values are easily found from figures 6(b) and (d). For example,
if 80-percent combined success is desired, the allowable miss distance
must be no less than 0.00365 radius and the AV capability no less than
0.072 escape velocity.

Accuracy of sample size. - Results of the reference solution may be
used to determine the accuracy to which a given sample size approximates
the infinite distribution from which it was drawn. The 200 samples were
subdivided into four groups of 50 samples each. A comparison is shown
in figure 6(m). The deviation among sample groups, particularly at
high probability, is not especially welcome and indicates that statistical
inference from 50 samples may be considerably in error unless limited to
average-type values such as the median.

It is frequently convenient, when testing the significance of a
sample group, to determine a measure of the error in the computed



arithmetic mean. This may be accomplished with the use of a simyple
formula, the assumption being that the means of an infinitely large num-
ber of sample groups will be asymptotically normally distributed (refs.
10 and 11). Denoting the standard error of sample mean by S.E. and
the standard deviation of the sample by o,

S.E. = —=—

-~/5

where S is the sample size. The standard ceviation is a measure of

the dispersion about the mean. By definitior., if Xi denotes the dif-
ference between the 1th sample value and tle arithmetic mean calculated
for the sampie, then

The standard error is customarily interpretec as follows: The probability
that the sample mean is less than 1 S.E. from the true mean is about

68 percent, while the probability that it is less than 3 S.E. from the
true mean is 99.7 percent.

The following table compares the four semple groups (from fig. €(m))
in terms of the arithmetic mean, standard deviation, and standard error:

Sample |Aritkmetic | Standard Staindard error
group mearl deviation of mean

Total velocity incremeit

I 0.0478 0.0146 0.00 207 (4.5%)
11 L0567 .0z8Y .0Ct10 (7.2%)
III L0575 L0209 .0C 298 (5.2%)
IV .0689 .0443 .0cs327 (9.1%)

Absclute final miss distance

I 1.40X1073 | 1.03x10-% | 0.143X107°  {10.4%)
11 17.3 68.6 3.7C (56%)
111 1.93 3.86 .545 (28%)

IV Y.96 33,3 4.71 (47%)

9%L-8
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The first table compares the statistical results for the total ve-
locity increment. The arithmetic mean varies between the four sample
grouss from 0.0478 to 0.0689. The largest standard error of the mean
(9.1 percent) was indicated for sample group IV.

The second table compares the statistical results for the absoclute
final miss distance. The arithmetic mean varies between 0.0014 and 0.0173,
with the largest standard error of the mean (56 percent) indicated for
sample group ITI.

It is noted that the effect of sample size on accuracy of results
1s more critical in the case of the miss distance. One might expect
the true dispersion of miss distance distributions to be relatively
greater than that of AV distributions. Since the standard error varies
directly with the standard deviation (measure of dispersion), this
criticality would also be expected. Based upon this exampgle, one might
conclude that 50 samples are too small for nigh statistical significance,
but may adequately be employed for Tirst approximations in evaluating
guldance performance.

Guidance Considerations

The choice of the reference solution, within the framework of the
guidance scheme hypothesized, was based on the following results of a
bParametric study. With arbitrary values assigned to measurement errors
and initial trajectory parameters, the major guidance parameters to be
investigated are (1) the number of corrections and (2) the range at which
corrections are initiated. As will be the general procedure herein, all
parameters not specifically varied will be those of the reference solu-
tion as summarized in table I. Also, the sample size is reduced to 50
because of computing time limitations.

Number of corrections. - The starting and final correction points
(50 and 1.5 radii, respectively) are held constant, and the effects on
guidance due to variation of the number of corrections are investigated.
A comparison of total AV requirements for various values of n is
illustrated in figure 7(a). Of interest is the minimun AVy  correspond-

ing to a given probability, that is, the curve farthest removed to the
left. The minimum AVy results for n = 4, while the velocity require-
ment for nine corrections is approximately twice the minimum. Since the
sample size 1is small, the question of statistical significance arises and
is treated in appendix B.

Figure 7(b) illustrates the effect of the number of corrections on
the guidance accuracy. A curve for n = 2 1is not shown since the
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corresponding AV reguirement is excessive. The characteristic of in-
creasing accuracy with decreasing n followe from prior considerations
of the spacing between measurements.

A comparison of figures 7(a) and (b) indicates that either three or
four corrections result in reasonably good gnidance. If the miss dis-
tance is within mission requirements in both cases, emphasis should be
placed on conserving velocity increment.

Guidance initiation. - The value of ranze Ri at which the first

corrective impulse is apclied 1is varied so as to determine its effect
on guidance. Four corrections are used in each case. (A simultaneous
variation of n and Ry was performed, indicating that n = 4 was a

good choice for the values of Rj studied.)

The effects of guidance initiation on tae AV requirement are shown
in figure 8(a) for Ry of 70, 50, and 30 radil. The dispersion of the
distribution decreases with decreasing Ri. This characteristic is to be
expected since the dispersion of the distribution of Pj,4q decreases

with small Rj and consequently affects the dispersion of the AVy dis-

tribution. Considering the median wrobability of occurrence, an optimum .
Ry 1is anticipated between 70 and 30 radii. However, at the 90-percent

probability level the AV requirements for R; = 30 and 50 are about

equal. In view of the entire probability distribution, an initial cor-
rection applied at 50 radiil is considered tc¢ result in reasonably good
guidance. The above characteristics were tested for statistical sig-
nificance in appendix B. Figure 8(b) shows the probabllity of hitting
a given size target band. The distributions are essentially alike with
no appreciable effect indicated.

Effect of Error Assumptions anw Initial Energy

The guidance requirements have been inrestigated for a vehicle ap-
proaching a planet along a particular trajectory; namely, parabolic with
an initial perigee equal to S planet radii. It is recalled that the
target is 1.02 radii. Furthermore, the max.mum €rror in measuring angles
was taken as 1 minute of arc. The initial serigee, measurement error,
and initial energy will now be varied and tieir effects on guidance
noted.

Tnitial trajectory error. - As previously defined, the initial tra-
jectory error is the difference between the initial perigee and the tar- -
get perigee. The effect of initial perigee on veloclty expenditure is
illustrated in figure 9(a). All parameters not varied are those from the
reference solution as listed in table I. Tne total velocity increment

9%L-d



E-746

CE-4

25

increases with the initial trajectory error <Pi"Ptar)' Fach curve in

the family has essentially the same shape; however, as P; increases,

the skewness towards larger AVy increases slightly. Figure 9(b) il-

lustrates the effect of initial perigee on the efficiency of guidance.
The excess velocity increment (AVt - &V;4) is plotted against P; for

constant values of probability. As before, AVjy was calculated for a

single correction applied at R = 100 assuming perfect measurements
(see fig. 2). The excess velocity increment is seen to increase ap-
proximately linearly with Ps;. For example, the median excess at

P; = 1.02 1is 0.0l5 escape velocity, and at P; = 10, 0.048 escape ve-

locity. The figure alsu shows that the rate of linear variation in-
cregses with the probability level.

There was no significant effect on guidance accuracy due to varia-
tion of P;. If only a single correction were made, an appreciable dif-

ference in accuracy would result (see figs. 5(a) and &(j)); however, suc-
cesslve corrections act to bring all vehicles into a common probability
distribution about the target.

Size of measurement error distribution. - The magnitude of the
measurement error is one of the most important factors affecting guidance.
Results are now presented for a variation of error from 1 to 600 seconds
of arc. As in the reference solution a rectangular distribution is
assumed, the maximum error being representative of the size.

Results of guidance accuracy are shown in figure 10(a) where the
miss distance is a function of measurement error size for constant values
of probability. Miss distance increases approximately linearly with the
measurenent error for errcrs less than about 5 minutes of arc. Thus, an
error reduction from 1 minute to 1 second results in a sixtyfold increase
in accuracy. Measurement errors of 1 second permit guidance to 2X107°
radius (422 ft) with 50-percent probability, and to about 5X10°° radius
(1050 ft) with 90-percent probability. Note: The small cample size re-
duces the numerical significance for high probability levels.

The AV reyuirement is shown in figure 10(b) as a function of the
maximum measurement error. The total velocity increment AVy  increases

rapidly for very large errors (greater than 20 sec arc). The median (50-

percent probability) velocity expenditure is about 0.025 Ve for 1 second

of arc error, 0.032 v, for 20 seconds of arc, and 0.13 v, for 400

seconds of arc. The statistical disgpersion, as exemplified by the dif-
ference between 90- and 10-percent probability, also increases with
measurement error.
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As an example of using figures 10, assure that a vehicle is to be

guided to within 40.001 radius of the target with a 90-percent probability.

From figure 10(a) it is found that the maximim measurement error must be
;0 greater than 20 seconds of arc. Using this error in figure 10(b) it
is found that a total velocity increment less than 0.039 escape velocity
is expended Y0 percent of the time. This is 0.02Z268 escape velocity over
the ideal requirement. If miss distance and AVy are assumed uncor-

related, there exists an 8l-percent probability that the vehicle will
suide to within +0.001 radius and in so doing require no more than 0.038
escape velocity.

Initial energy. - A comparison of AV 7zrequirements for initial
energies of 0, 0.10, and 0.20 is shown in figure 11(a). Results are
given in terms of excess AV so that the effect of energy con guidance
is ciearly indicated. There are two reasons for the increase of excess
velocity increment with initial energy. First, the AV reguired to
correct a given trajectory error increases with energy (this may be
shown from egs. (5), (8), and (12)). Second, as discussed in the error
analysils, accurate knowledge of trajectory parameters decreases with
increasing energy. Note: This latter effect is peculiar to the partic-
ular measurement scheme considered. Figure 11(a) also illustrates that
higher energies increase the dispersion of the statistical distribution.
For example, the difference in excess AV (ccmparing E; of O and

(
0..0) at 90-percent probability is about 5% times greater than the dif-

ference at 50 percent.

Figure 11(b) illustrates the effect of initial energy on final
guidance accuracy. Results show that there is no significant effect,
although the miss distance was slightly greater for higher energies.

One might have expected a larger difference i1a accuracy because of the
discussion of figure 5(b). However, the final accuracy is dependent

upon the conditions of the set of measurements corresponding to the final
correction; figure 5(b) is not in the range of the final correction.

CONCLUDING REMARKS

An exploratory analysis of vehicle guidaace during the approach to
a planet was presented, with the target of guidance being defined in
terms of a perigee distance. The analysis assumed two-body conic tra-
jectories, a two-dimensional polar representation, and impulsive velocity
corrections. A simplified navigation scheme was hypothesized utilizing
optical or infrared instrumentation (with sigaificant errors) to obtain
measurements of range and a reference angle 11 the trajectory plane.
Trajectory parameters were determined from the minimum information avail-
able by this scheme, namely, three successive position fixes. The method

9%.L-4
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used in studying the guidance problem was based on the Mente-Carlo
technique, which consisted of repeated calculation of random trajectory
runs where the random variable was the measurement error. Statistical
results for the reference solution were developed from 200 samples;
however, the sample size was reduced to 50 for the rarametric study.
Results were analyzed primarily on the basis of the probability of error
in final perigee distance and the brobability of velocity-increment re-
quirements as a measure of propellant expenditure,

The major objectives of this report were as follows: (1) to present
a method of obtaining statistical results associated with the guidance
problem, and to indicate the type of results, along with their inter-
rretation, which may be obtained, and (2) to illustrate the method by a
reasonable and comprehensive example of g guidance scheme. Obviously,
certain classes of results are peculiar to the initial conditions assumed
and to the particular guidance scheme hypothesized. For instance,
numerical results depend upon the energy level of the mission, residual
trajectory errors incurred during midcourse or launch guidance, and the
size of measurement errors among other factors. Also, the choice of an
optimum-type solution (specifically, values of guidance initiation and
frequency of corrections) may be greatly affected by the measurement
scheme and guidance logic assumed.

In an earlier report by the authors (ref. Z) an investigation of
guidance requirements was made within a framework of measurement and
guidance logic differing substantially from that considered here. The
factors governing the difference in results are those mentioned previously.
However, it would be of interest to note certain areas of agreement; the
implication being that some results are basic to the problem and relatively
independent of the guidance scheme. OFf considerable importance are the
conflicting requirements of guidance accuracy and propulsion. As range
to the planet decreases, the ability to determine Proper corrective actiocon
improves rapidly; however, the AV required increases. Unless instru-
mentation is extremely accurate, a single trajectory correction far from
the planet will not suffice for highly accurate guidance as would be
required for atmospheric drag entries. The manner in which corrective
maneuvers are executed can have an appreciable effect on AV require-
ment; consegquently, optimum guidance logic may be important. Guidance
accuracy is sensitive to the desired target perigee since this is the
minimum range at which corrections can be made. For a given allowable
miss distance a preference for low-altitude targets is indicated. It
is realized, of course, that the effect of miss distance is more critical
for such targets. The thrust devices needed for optimum guidance should
be capable of producing a large variation of AV increment.

Use of the Monte-Carlo technique for obtaining statistical results
offers a number of advantages for vehicle guidance analysis. The number
of random variables that could be considered is unlimited and may all be



taken into account simultaneously. For exam.le, a complete analysis
might include randomness in initial trajectory parameters, measurement
errors, and errors in the application of AV. A running statistical
record of guidance performance is obtained, «nd the identity of a given
venicle need not be lost. A drawback of the method is that results for
nigh success probability are liable to be inuccurate unless a large
sample size is used. The sample size requir:d is most affected by the
dispersion (range) of the random variables.

Representative results for the particular measurement scheme and
guidance logic hypothesized are as follows: Consider a parabolic approach
trajectory and the first position fix taken at 100 radii. Optimum-type
guidance results when four corrections are mide and executed in the
vicinity of 50, 16, 5, and 1.5 radii, respec:ively. With measurement
errors less than 1 minute of arc, the probabllity is 30 percent that the
miss distance will be less than 10.008 radius (32 miles). The AVy  re-

gquirement depends upon the initial trajectory error. A vehicle which is
initially on target requires a median AVy of 0.018 vy (530 ft/sec) and

has a 98-percent probability of using less than 0.04 vg (1470 ft/sec).

In comparison, a vehicle having an initial trajectory error of about 4
radii would require a median AVy of 0.047 /4 (1730 ft/sec) and have a

98-percent probability of using less than 0.4 v (8150 ft/sec). A re-

duction of the measurement error to 20 seconls of arc causes these miss
distances to be reduced by a factor of 3, anl AVy to be reduced by a

factor of 2.

Lewis Research Center
National Aeronautics and Space Administration

Cleveland, Ohio, June 24, 1960
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APPENDIX A

ANGULAR MOMENTUM ERROR ANALYSIS

An expression is to be derived which gives the error in angular
momentum as a function of errors in measured position. A solution of
angular momentum is found from equation (15) for position fixes (a,b,c):

o _ sin(6y, - 6,) + sin(6, - 6,) + sin(6, - 6;) _X
IS . 1 . 1 . )
E; sin(6y - 6.) + ﬁg sin(6, - 65) + ﬁz sin{64 - 6p) (A1)

Equation (Al) is differentiated with respect to each of the six variables:

C

]
2y 12 :a<2H2) 1§ :a<2H2)
a(g*) = = —Sgg—— dek + 5 —Sﬁg—— dRy

k=a =3

recalling that dR 1is given by equation (19). After performing the
partial differentiation and expanding we obtain 4(H2) as the sum of six
independent error terms. Substituting the following notation:

a(H?) = (H2) daw = (w) ae = (0)

err? err’ err’

2 -
(H )err"Tl(wa)err'+T2(wb)err4'T5(wc)err'+T4(9a)err'+T3<eb)err+'T6(ec)err
(A2)

where
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a
N Ra L T -
T, = - 7 R sin(6y - 63)
‘l 2
N R‘b - l
T. = - sin(6, - €,)
2 AD2 Ry ¢ 3
z
R: -1
N C
Ty = - sin(8g - €p)
3 AD2 R.
T, = _IE{D[COS(Ga - By) - cos(6; - Ga)]
2D
1 1
- N[ﬁg cos(8g - Bp) - ﬁg cos(6c - 9aﬂ} > (A3)
1
T = E—]SE{D[COS(% - 6.) - coe(8y - eb)]
) .
- N[§— cos(8y, - Gc) - —Rl— ccs(6y - Gb)]}
a, C
Tg = E%E-{D[}os(ec - 64) - coe(Bp - Qcﬂ
- N[Ri- cos(8, - 6,) - ﬁl- cos(6y - ec)]}
b a

J

Assume the errors in measured angles to arise from the same error
distribution (identical size and shape). For convenience, consider two

measures of (Hz)err:

Root-mean-square error

[(HZ)err]rms - (Ad)

where Vepp 18 the common angular error. .

IVL-H
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Maximum absolute error

6

[(HZ)err]maxE Z | T5] ) (Werr) pax (A5)

i=1

As an example, consider an instrument possessing a rectangular (uniform)
error distribution.

1 f(Werr)

(c)

Sketch (c) shows the error density function f(Yepy) to be constant over

Werr

the interval -A to A. Thus, any error is equally likely between -A
and A, the maximum absolute error being A.

The rms error, or standard deviation o, is defined as the square
root of the second moment of f(werr). For this example

(\yerr)rmS =0 = A/(~/3) with A to be expressed in radians.
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APPENDIX B

SIGNIFICANCE TEST

When comparing two statistical results which are obtained from some
sampling method, a measure of statistical significance must be included
in order that correct inference be drawn fron the data. There are various
methods, such as the chi-square test, which are used to determine how
well a particular sample fits some assumed parent (infinite) distribution.
In our case, however, it is not apparent whether the data correspond to
a standard type distribution. A simple "test of proportions' is sub-
situted for a more complicated technique. Tris method is presented in
reference 10.

Let two random samples be given in whick the number of items less
than a certain value (C) is N; for sample 1 and N; for sample 2.

The sizes of the samples are Sl and Sp; p; and pp are the respective
probabilities of being less than C, where 1 = Ni/S; and ps = Np/So.
Let p denote the total probability (N, + N:)/(S; + S3), and q =1 - p.

The purpose of the test is to show whetler the difference between
pp and Dpp is significant, or whether it is a chance difference due to

sampling fluctuation. The standard error of the difference may be calcu-
lated by the formula

l ‘!
S5.BE. = qu§I + ézg

The number of standard errors in the differerce is thus (pj - pg)/S.E.

A measure of significance is obtained from tle property of a normal prob-
ability distribution commonly available in teble form. For example, if
the difference contains three standard errors, the probability that it is
significant and did not arise due to chance is 99.7 percent.

Figures 7 and 8 show the results of a perametric study undertaken to
indicate the effects of the number of corrections (n) and the range at
which the first correction is made (Ri) upon guidance performance. The

guidance performance is measured by total velocity requirement (AVt) and
absolute miss distance |Pp - Ptar|' Results are cbtained from a sample

size of 50; therefore, some measure of statistical significance is
indicated.

The significance test is applied to the statistical data shown in
figures 7(a) and (b).

9%.L-d
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A. - Total velocity requirements (variation of n)

AV Probability of using|Significance of
less than AVy, % difference, %

n=4{n=5|n=3{n=7|n=9 [4-54-314-714-9

0.04 26 g 20 z 0 29| 53]100 |100
.05 720 63| 42] 14 0 65{100|100|100
.06 86| 78| 64| 48 2 70| 92100100

.07 91| 86| 78| 74| 1z 571 94 981100

.08 94| 92| 86| 82| 30 30| 82 941100

B. - Absolute miss distance (variation of n)

P_-P Probability, percent|Significance of

PR yitnin [Py - Pigy| | aifference, %

n=3|n=4{n=5{n=7[(n=9 | 3-4(3-5{3-7(3-9

0.001 60| 35| 38| 20} 22 99| 971100]|100
.002 92| 76| 62 42| 54 97|100}1001100
.003 95| 90| 80| €68} 66 66| 981100|100

Figure 7(a) illustrates that minimum velocity expenditure results
for a four-correction guidance scheme. Table A shows the significance
of this conclusion over a range of the probability distribution. A com-
parison with values of n = 7, 9 shows very high significance while that
with n =3 1is significant except at low probability levels, which are
of little interest anyway. A comparison between n =4 and n =5
shows poor significance; thus, it is likely that the difference in
statistical results arose because of sample fluctuation. FEither value
may be considered to result in minimum velocity expenditure.

By a similar argument based on table B, it i1s concluded that most
accurate guidance corresponds to n = 3 (with reservation at high prob-
ability levels).

Application of the significance test to data from figures 8(a) and
(b) gives the following results:
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C. - Total velocity requirement (variation of Ri)

[av, | Propability of Significancgﬁ
using less than of differ-
AV, % ence, b

R; =50| Ry =30| Ry=70 50-50| 50-70

0.02 7z 10 4z 102 | 100

.06 86 70 68 95 g7
.07 92 98 80 8% 92
.08 94 L”}OO 9 ce 55
D. - Absolute miss distance (variation of Ry )
Pf—Ptar\ Probabllity, Significance
percent within of differ-
|P¢ - Piar| ence, %
Ri=30 Ri=50‘Ri=7O 30-50130-70
0.001 46 36 4] 69 37
.002 80 77 74 27 52

.003 98 90 90 91 91

A comparison of the effect of guidance initia~ion on AV requirement,
as given in figure 8(a), shows that Ry = 50 results in smaller velocity

expenditure if the probability level 1is below 90 percent. The signifi-
cance of this result is verified in table C. The probability of requiring
less than 0.07 escape velocity is 98 and 92 p:rcent for Rj = 30 and

50, respectively. The significance of this difference is about 84 per-
cent. Although statistics were developed fron a small sample size, the
characteristic of figure 8(a) is felt to be significant.

On the other hand, as a result of this significance test little
value is placed on the comparison shown in fizure 8(b). However, since
the results are so similar, it could be said that no essential effect on
guidance accuracy is indicated because of variation of guidance
initiation.
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TABLE I. - PARAMETERS ASSUMED IN REFERENCE SOLUTION

Parameter Assumed value Approx. equiv-
alent for earth
approach
Trajectory:

Ei energy 0 (parabolic) 0

P; perigee 5 radii 20,000 miles

Py, target perigee 1.02 radii 80-mile altitude

Y rperigee argument 2259

Measurement errcr distribution:
ery® and erpf

Shape
Max. error size

Rectangular (uniform)
41 minute of arc

Guidance scheme:
Measurements initiated
Ry range of first correction

Ry range of final correction

n rnumber of corrections
Zero restraint

100 radii
50 radii
1.5 radii
4

400,000 miles
200,000 miles

6,000 miles

Statistics:
S sample size

200 cases
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Initial AV

trajector

“Target
trajectory

Planet

() Trajectory correction.

Radial direction

(b) Velocity relations.

Figure 1. - Notation used in analysis.
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Figure 3. - Measurement scheme.
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Range error coefficient, dR/dw, radii/radians
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Rme perigee error coefficient, dP, radii/radians
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Figure 5. - Error sensitivity in perigee
determination.
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Rms perigee error coefficlent, 4P, radii/radians
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(b) Effect of energy. P = 5; R, = 100.

Flgure 5. - Concluded. Frror sensitivity in
perigee determination.
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Percent within |Pf - P
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(b) Probability of hitting a g ven size target band.

Figure 6. - Continued. Results of reference solution.
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Percent within given increment size
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(c) Frequency distribution of total velocity expenditure.

Figure 6. - Continued. Results of reference solution.



46

Probability of using less than AVt, percent
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(d) Probability of total velocity :nerement requirements.

Figure 6. - Continued. Results o' reference solution.
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Percent within given increment size
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Figure 6.

- Continued.

Results of reference solution.
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Probability of using less than AVy, percent
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Figure 6. - Continued. Results of reference solution.
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Figure €. - Continued. Results of reference solution.
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Figure 7. - Effects of variation in number of corrective
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Probability of using less than (AVy - AVi4), percent
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